Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.527
Filtrar
1.
PLoS One ; 19(4): e0298668, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625919

RESUMEN

Limax maximus, or great gray slug, is a common agriculture pest. The pest infests crops during their growth phase, creating holes in vegetable leaves, particularly in seedlings and tender leaves. A study was conducted to assess the insecticidal activity of Ageratina adenophora extract against these slugs. Factors such as fecundity, growth, hatching rate, offspring survival rate, protective enzyme activity, and detoxifying enzyme activity were examined in slugs exposed to the extract's sublethal concentration (LC50) for two different durations (24 and 48 h). The phytochemical variability of the extracts was also studied. The LC50 value of the A. adenophora extract against L. maximus was 35.9 mg/mL. This extract significantly reduced the hatching rate of eggs and the survival rate of offspring hatched from exposed eggs compared with the control. The lowest rates were observed in those exposed for 48 h. The survival, growth, protective enzyme, and detoxification activity of newly hatched and 40-day-old slugs decreased. The A. adenophora extract contained tannins, flavonoids, and saponins, possibly contributing to their biological effects. These results suggest that the extract could be used as an alternative treatment for slug extermination, effectively controlling this species.


Asunto(s)
Ageratina , Asteraceae , Gastrópodos , Insecticidas , Animales , Insecticidas/farmacología , Moluscos , Extractos Vegetales/farmacología
2.
Curr Biol ; 34(7): R269-R270, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38593767

RESUMEN

High-resolution object vision - the ability to separate, classify, and interact with specific objects in the environment against the visual background - has only been conclusively shown to have evolved in three of the thirty-five animal phyla: chordates, arthropods, and mollusks (cephalopods)1. However, alciopid polychaetes (Phyllodocidae, Alciopini), which possess a pair of bulbous camera-type eyes, have also been hypothesized to achieve high acuity. In this study, we examined three species of night-active pelagic alciopids from the Mediterranean Sea. Our optical, morphological, and electrophysiological investigations show that their eyes have high spatial acuity and temporal resolution, supporting the notion that they are capable of active, high-resolution object vision. These results encourage interesting hypotheses about the visual ecology of these enigmatic polychaetes.


Asunto(s)
Artrópodos , Visión Ocular , Animales , Ojo/anatomía & histología , Moluscos , Ecología
3.
Bull Environ Contam Toxicol ; 112(4): 58, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594479

RESUMEN

This study investigated the species, density, biomass and physicochemical factors of benthic macroinvertebrates in Hongze Lake from 2016 to 2020. Redundancy analysis (RDA) was used to analyze the relationship between physicochemical parameters and the community structure of macroinvertebrates. Macroinvertebrate-based indices were used to evaluate the water quality conditions in Hongze Lake. The results showed that a total of 50 benthic species (10 annelids, 21 arthropods and 19 mollusks) were collected. The community structure of benthic macroinvertebrates varied in time and space. The dominant species were Limnodrilus hoffmeisteri (L.hoffmeisteri), Corbicula fluminea (C.fluminea), Nephtys oligobranchia (N.oligobranchia). In 2016, arthropods such as Grandidierella sp. were the dominant species of benthos in Hongze Lake while annelids and mollusks dominated from 2017 to 2020, such as L.hoffmeisteri, N.oligobranchia, C.fluminea. The benthic fauna of Chengzi Lake and Lihewa District were relatively abundant and showed slight variation, while the benthic macroinvertebrates of the Crossing the water area were few and varied greatly. RDA showed that changes in benthic macroinvertebrate structure were significantly correlated with dissolved oxygen (DO), Pondus Hydrogenii (pH) and transparency (SD). The Shannon Wiener, Pielou, and Margalef indices indicate that Hongze Lake is currently in a moderately polluted state. Future studies should focus on the combined effects of various physicochemical indicators and other environmental factors on benthic communities.


Asunto(s)
Artrópodos , Oligoquetos , Animales , Invertebrados , Lagos , Calidad del Agua , Moluscos , Monitoreo del Ambiente , Ecosistema
4.
Sci Data ; 11(1): 314, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538659

RESUMEN

Climate change is swiftly reshaping marine ecosystems, affecting different biological levels. Changes in thermal conditions profoundly influence ectotherms' growth, behaviour, and functions, making knowledge of species' thermal preferences (TP) crucial for understanding their responses to ongoing warming. However, obtaining this data is challenging due to limited studies, especially for deep-sea demersal and bottom-dwelling species. Here, we present the MedFaunaTP dataset, a collection of survey-based TPs for 939 Mediterranean species of fish, crustaceans, molluscs, echinoderms, cnidarians, and tunicates calculated using species abundance data obtained from the international bottom-trawl survey in the Mediterranean (MEDITS) and bottom temperature data derived from the Copernicus Monitoring Environment Marine Service. MEDITS estimates are based on species biomass indices from 27587 sampling stations, collected from 1994 to 2020, covering the northern Mediterranean Sea and spanning depths from 10 to 800 m. The MedFaunaTP dataset may serves as a valuable resource for understanding and addressing marine ecosystem ecological, conservation, and management challenges in the context of climate change and associated global warming.


Asunto(s)
Organismos Acuáticos , Ecosistema , Temperatura , Animales , Biomasa , Cambio Climático , Peces/fisiología , Mar Mediterráneo , Moluscos
5.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38546725

RESUMEN

Patella caerulea (Linnaeus, 1758) is a mollusc limpet species of the class Gastropoda. Endemic to the Mediterranean Sea, it is considered a keystone species due to its primary role in structuring and regulating the ecological balance of tidal and subtidal habitats. It is currently being used as a bioindicator to assess the environmental quality of coastal marine waters and as a model species to understand adaptation to ocean acidification. Here, we provide a high-quality reference genome assembly and annotation for P. caerulea. We generated ∼30 Gb of Pacific Biosciences high-fidelity data from a single individual and provide a final 749.8 Mb assembly containing 62 contigs, including the mitochondrial genome (14,938 bp). With an N50 of 48.8 Mb and 98% of the assembly contained in the 18 largest contigs, this assembly is near chromosome-scale. Benchmarking Universal Single-Copy Orthologs scores were high (Mollusca, 87.8% complete; Metazoa, 97.2% complete) and similar to metrics observed for other chromosome-level Patella genomes, highlighting a possible bias in the Mollusca database for Patellids. We generated transcriptomic Illumina data from a second individual collected at the same locality and used it together with protein evidence to annotate the genome. A total of 23,938 protein-coding gene models were found. By comparing this annotation with other published Patella annotations, we found that the distribution and median values of exon and gene lengths was comparable with other Patella species despite different annotation approaches. The present high-quality P. caerulea reference genome, available on GenBank (BioProject: PRJNA1045377; assembly: GCA_036850965.1), is an important resource for future ecological and evolutionary studies.


Asunto(s)
Gastrópodos , Rótula , Animales , Concentración de Iones de Hidrógeno , Anotación de Secuencia Molecular , Agua de Mar , Moluscos/genética , Cromosomas , Gastrópodos/genética
6.
Sci Rep ; 14(1): 5974, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472267

RESUMEN

Schistosomiasis is a major Neglected Tropical Disease, caused by the infection with blood flukes in the genus Schistosoma. To complete the life cycle, the parasite undergoes asexual and sexual reproduction within an intermediate snail host and a definitive mammalian host, respectively. The intra-molluscan phase provides a critical amplification step that ensures a successful transmission. However, the cellular and molecular mechanisms underlying the development of the intra-molluscan stages remain poorly understood. Here, single cell suspensions from S. mansoni mother sporocysts were produced and sequenced using the droplet-based 10X Genomics Chromium platform. Six cell clusters comprising two tegument, muscle, neuron, parenchyma and stem/germinal cell clusters were identified and validated by in situ hybridisation. Gene Ontology term analysis predicted key biological processes for each of the clusters, including three stem/germinal sub-clusters. Furthermore, putative transcription factors predicted for stem/germinal and tegument clusters may play key roles during parasite development and interaction with the intermediate host.


Asunto(s)
Parásitos , Esquistosomiasis mansoni , Esquistosomiasis , Animales , Perfilación de la Expresión Génica , Mamíferos/genética , Moluscos/genética , Parásitos/genética , Schistosoma mansoni/genética , Esquistosomiasis/parasitología , Esquistosomiasis mansoni/parasitología
7.
Proc Natl Acad Sci U S A ; 121(14): e2311597121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527199

RESUMEN

Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.


Asunto(s)
Ecosistema , Moluscos , Humanos , Animales , Guyana Francesa , Plantas , Polen , Fósiles
8.
Zootaxa ; 5405(4): 526-544, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38480172

RESUMEN

The neogastropod family Vasidae comprises a small group of Late Eocene to Recent neogastropods with large, often ornate shells. A new, shell-based morphological classification of the family is proposed, in which ten genera are recognized: Altivasum Hedley, 1914, Aristovasum gen. nov. (type species: Turbinella cassiforme Kiener, 1840), Florivasum gen. nov. (type species: Turbinella tubifera Anton, 1838), Globivasum Abbott, 1950 (type species: Turbinella nuttingi Henderson, 1919, but expanded here), Hystrivasum Olsson & Petit, 1964 (type species: Vasum horridum Heilprin, 1887), Rhinovasum gen. nov. (type species: Voluta rhinoceros Gmelin, 1791), Siphovasum Rehder & Abbott, 1951, Tudivasum Rosenberg & Petit, 1987, Vasum Rding, 1798 (here restricted to a reef-associated group of three species typified by Murex turbinellus Linnaeus, 1758), and Volutella Perry, 1810 (here resurrected from synonymy with Vasum, type species Voluta muricata Born, 1778). Biogeographically the Vasidae exhibit a deep divergence between the Atlantic-East Pacific and Indo-West Pacific realms dating to the Early Miocene.


Asunto(s)
Gastrópodos , Moluscos , Animales , Filogenia
9.
PLoS Comput Biol ; 20(3): e1011835, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427695

RESUMEN

From mathematical models of growth to computer simulations of pigmentation, the study of shell formation has given rise to an abundant number of models, working at various scales. Yet, attempts to combine those models have remained sparse, due to the challenge of combining categorically different approaches. In this paper, we propose a framework to streamline the process of combining the molecular and tissue scales of shell formation. We choose these levels as a proxy to link the genotype level, which is better described by molecular models, and the phenotype level, which is better described by tissue-level mechanics. We also show how to connect observations on shell populations to the approach, resulting in collections of molecular parameters that may be associated with different populations of real shell specimens. The approach is as follows: we use a Quality-Diversity algorithm, a type of black-box optimization algorithm, to explore the range of concentration profiles emerging as solutions of a molecular model, and that define growth patterns for the mechanical model. At the same time, the mechanical model is simulated over a wide range of growth patterns, resulting in a variety of spine shapes. While time-consuming, these steps only need to be performed once and then function as look-up tables. Actual pictures of shell spines can then be matched against the list of existing spine shapes, yielding a potential growth pattern which, in turn, gives us matching molecular parameters. The framework is modular, such that models can be easily swapped without changing the overall working of the method. As a demonstration of the approach, we solve specific molecular and mechanical models, adapted from available theoretical studies on molluscan shells, and apply the multiscale framework to evaluate the characteristics of spines from three distinct populations of Turbo sazae.


Asunto(s)
Modelos Teóricos , Moluscos , Animales , Simulación por Computador , Algoritmos
10.
Mol Cell Endocrinol ; 586: 112192, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38408601

RESUMEN

Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.


Asunto(s)
Neuropéptidos , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/genética , Invertebrados/genética , Vertebrados , Neuropéptidos/genética , Moluscos/genética , Ligandos , Evolución Molecular , Filogenia
11.
Int J Biol Macromol ; 262(Pt 1): 130008, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331073

RESUMEN

Crustaceans and mollusks are widely consumed around the world due to their delicacy and nutritious value. During the processing, only 30-40 % of these shellfish are considered edible, while 70-60 % of portions are thrown away as waste or byproduct. These byproducts harbor valuable constituents, notably chitin. This chitin can be extracted from shellfish byproducts through chemical, microbial, enzymatic, and green technologies. However, chitin is insoluble in water and most of the organic solvents, hampering its wide application. Hence, chitin is de-acetylated into chitosan, which possesses various functional applications. Recently, nanotechnology has proven to improve the surface area and numerous functional properties of metals and molecules. Further, the nanotechnology principle can be extended to nanochitosan formation. Therefore, this review article centers on crustaceans and mollusks byproduct utilization for chitosan, its nano-formation, and their food industry applications. The extensive discussion has been focused on nanochitosan formation, characterization, and active site modification. Lastly, nanochitosan applications in various food industries, including biodegradable food packaging, fat replacer, bioactive compound carrier, and antimicrobial agent have been reported.


Asunto(s)
Quitosano , Animales , Quitosano/química , Quitina/química , Crustáceos/química , Moluscos , Industria de Alimentos
12.
Mol Phylogenet Evol ; 194: 108029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38341006

RESUMEN

Body size is a fundamental characteristic of animals that impacts every aspect of their biology from anatomical complexity to ecology. In Mollusca, Solenogastres has been considered important to understanding the group's early evolution as most morphology-based phylogenetic reconstructions placed it as an early branching molluscan lineage. Under this scenario, molluscs were thought to have evolved from a small, turbellarian-like ancestor and small (i.e., macrofaunal) body size was inferred to be plesiomorphic for Solenogastres. More recently, phylogenomic studies have shown that aplacophorans (Solenogastres + Caudofoveata) form a clade with chitons (Polyplacophora), which is sister to all other molluscs, suggesting a relatively large-bodied (i.e., megafaunal) ancestor for Mollusca. Meanwhile, recent investigations into aplacophoran phylogeny have called the assumption that the last common ancestor of Solenogastres was small-bodied into question, but sampling of meiofaunal species was limited, biasing these studies towards large-bodied taxa and leaving fundamental questions about solenogaster body size evolution unanswered. Here, we supplemented available data with transcriptomes from eight diverse meiofaunal species of Solenogastres and conducted phylogenomic analyses on datasets of up to 949 genes. Maximum likelihood analyses support the meiofaunal family Meiomeniidae as the sister group to all other solenogasters, congruent with earlier ideas of a small-bodied ancestor of Solenogastres. In contrast, Bayesian Inference analyses support the large-bodied family Amphimeniidae as the sister group to all other solenogasters. Investigation of phylogenetic signal by comparing site-wise likelihood scores for the two competing hypotheses support the Meiomeniidae-first topology. In light of these results, we performed ancestral character state reconstruction to explore the implications of both hypotheses on understanding of Solenogaster evolution and review previous hypotheses about body size evolution and its potential consequences for solenogaster biology. Both hypotheses imply that body size evolution has been highly dynamic over the course of solenogaster evolution and that their relatively static body plan has successfully allowed for evolutionary transitions between meio-, macro- and megafaunal size ranges.


Asunto(s)
Moluscos , Poliplacóforos , Animales , Filogenia , Teorema de Bayes , Moluscos/genética , Poliplacóforos/genética , Transcriptoma
13.
Glycobiology ; 34(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38366999

RESUMEN

The glycoprotein-N-acetylgalactosamine ß1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 ß1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.


Asunto(s)
Ecosistema , Galactosiltransferasas , Animales , Humanos , Bovinos , Secuencia de Aminoácidos , Galactosiltransferasas/metabolismo , Clonación Molecular , Moluscos/metabolismo , Antígenos Virales de Tumores
14.
Biosci Biotechnol Biochem ; 88(4): 399-404, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38271606

RESUMEN

Kahalalides, originally isolated from the sacoglossan mollusk Elysia rufescens, have been found in various Elysia and Bryopsis species, with over 20 variants identified to date. These compounds are biosynthesized by Candidatus Endobryopsis kahalalidefaciens within Bryopsis species. In this study, we report the isolation and structural determination of a new cyclic depsipeptide, mebamamide C (1), from Bryopsis sp. The planar structure was determined by spectroscopic data analyses, and the absolute configurations were determined using Marfey's method and modified Mosher's method. Additionally, our study explores the chemical relationship between Bryopsis algae and Elysia mollusks. The individual chemical profiles of these marine organisms highlight a fascinating aspect of marine chemical ecology. The distinct, species-specific chemical profiles observed in Elysia species imply the possibility of a symbiotic relationship with the kahalalide-producing bacteria.


Asunto(s)
Chlorophyta , Depsipéptidos , Animales , Moluscos/química , Depsipéptidos/química , Biología Marina
15.
BMC Biol ; 22(1): 9, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233809

RESUMEN

BACKGROUND: How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS: The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS: Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.


Asunto(s)
Gastrópodos , Animales , Gastrópodos/genética , Filogenia , Evolución Molecular , Moluscos/genética , Cromosomas , Fenotipo , Expresión Génica
16.
Sci Total Environ ; 915: 170050, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38218488

RESUMEN

Mollusks, the second largest animal family, are found in a variety of ecosystems. As they grow, their shells absorb carbon and form calcium carbonate, making them an important storage place for carbon. However, the amount of carbon deposited in the carbonate shells of terrestrial mollusks throughout modern and geological history has not been quantified. In this study, we first conducted an investigation of carbon deposits in shells from various mollusk species at 470 modern surface soil sample sites across diverse terrestrial ecosystems in China. The deciduous broadleaf forest and shrublands exhibited a higher carbon deposition rate of ∼1.37 ± 2.15 and ∼1.56 ± 2.92 g C m-2/yr-1, while croplands and grasslands displayed a rate of ∼1.11 ± 1.95 and 1.07 ± 1.78 g C m-2/yr-1, respectively. Using geostatistical methods, we estimated the total shell carbon deposition of grassland, forest, shrublands, and croplands in China to be ∼3.39-5.45 × 106 t C yr-1, constituting ∼1.68-2.71 % of China's terrestrial carbon sink, an overlooked portion in previous studies. Additionally, we provided quantitative data on shell carbon fluxes spanning a remarkable 20,000-year period through over ten fossil sequences from loess deposits. The results underscore the continuous and abundant carbon deposition in mollusk shells across various locations for at least 20,000 years, highlighting the persistence and substantial accumulation of shell carbon deposits over time. Remarkably, we estimated that the total shell carbon deposition of loess sediments in China and the world over the past 20,000 years may reach 1.10 × 108 t C and 1.29 × 109 t C, roughly equivalent to an afforestation area of 2.32 × 106 km2 and 2.72 × 107 km2, respectively.


Asunto(s)
Carbono , Ecosistema , Animales , Carbono/análisis , Secuestro de Carbono , Bosques , Moluscos , China , Suelo
17.
Mol Biol Rep ; 51(1): 182, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261113

RESUMEN

The rapid advancement of molecular research on macromolecules has contributed to the discovery of 'Lectin', a carbohydrate-binding protein which specifically interacts with receptors on the surface of glycans and regulates various cellular activities thereby stimulating immunological functions. Considering the wide variety of sources and immunological significance, research has led to the discovery of lectins in invertebrate molluscs. Such lectins in molluscs mediate active immune response as they lack adaptive immunity. Phylum Mollusca is identified with different types of lectins such as C-lectin, Galectin, P-lectin, I-lectin, and H-lectin, along with other immunologically significant lectin molecules such as F- lectin, R-lectin, ficolins, chitinase like lectin etc., all of these with specific ligand binding and structural diversity. Molluscan C-type lectins are the most functional ones that increase the activity of phagocytic cells through specific carbohydrate binding of antigenic ligands and haemocyte adhesion thereby enhancing the immune response. Helix pomatia agglutinin and Helix aspersa agglutinin are the two H-lectins that were identified within molluscs that could even target cancer-progressing cells through specific binding. Also, these lectins identified in molluscs are proven to be efficient in antibacterial and immunomodulatory functions. These insights attract researchers to identify novel lectins in molluscs and their characterization that play a key role in protection against diseases. This review discusses the structural features of mollusc lectins, their specific binding, molecular interactions and their immunological applications.


Asunto(s)
Gastrópodos , Moluscos , Animales , 60609 , Galectinas , Inmunidad Adaptativa
18.
J Helminthol ; 98: e7, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38225903

RESUMEN

Semperula wallacei (Issel, 1874) is a species of terrestrial slug that occurs in southeast China and the Pacific Basin and is the only species of its genus that occurs beyond the Oriental region and to the east of Wallace's line in the Australian region, where it has probably been introduced. In this study, we report for the first time S. wallacei as an intermediate host for Angiostrongylus cantonensis (Chen, 1935) based on histological and molecular analyses of slugs from Tuamasaga, Samoa, deposited at the Medical Malacological Collection (Fiocruz-CMM). DNA was obtained from the deparafinized tissues scraped from specimen slides. Polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) targeted to the internal transcribed spacer 2 (ITS2) region were carried out using the restriction enzyme Cla I. The RFLP profile observed for our larval specimen of S. wallacei was identical to the profile previously established for A. cantonensis, demonstrating that S. wallacei can be naturally infected with A. cantonensis and is likely to be an intermediate host for this parasitic nematode species in the field. The potential for geographical range expansion of S. wallacei in the Pacific Basin, its small size, and the general role of veronicellids as crop pests and hosts of nematodes, indicate the significance of S. wallacei as an invasive species in the Pacific Basin. Our work also highlights the importance of biological collections for investigating the environmental impact of invasive species on agriculture, public health, and biodiversity conservation.


Asunto(s)
Angiostrongylus cantonensis , Angiostrongylus , Gastrópodos , Nematodos , Infecciones por Strongylida , Animales , Angiostrongylus cantonensis/genética , Australia , Moluscos/parasitología , Especies Introducidas , Infecciones por Strongylida/veterinaria , Infecciones por Strongylida/parasitología
19.
Sci Total Environ ; 913: 169739, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38163610

RESUMEN

Microplastics (MPs) pollution in the marine environment has become a global problem. In this study, a number of 21 mollusk species (n = 2006) with different feeding habits were collected from 11 sites along the Bohai Sea for MPs uptake analysis. The MPs in mollusk samples were isolated and identified by micro-Fourier Transform Infrared Spectroscopy (µ-FTIR), and an assessment of the health risks of MPs ingested by mollusk consumption is also conducted. Approximately 91.9 % of the individuals among all the collected species inhaled MPs, and there was an average abundance of 3.30 ± 2.04 items·individual-1 or 1.04 ± 0.74 items·g-1 of wet weight. The shape of MPs was mainly fiber, and a total number of 8 polymers were detected, of which rayon had the highest detection rate (58.3 %). The highest abundance, uptake rate and polymer composition of MPs was observed in creeping types, suggesting that they might ingest these MPs from their food. The gastropod Siphonalia subdilatata contains the highest levels of MPs, which may increase the risk of human exposure if consumed whole without removing the digestive gland. The polymer risk level of MPs in these mollusks was Level III (H = 299), presenting harmful MPs such as polyvinyl chloride. In terms of human exposure risk, the average risk of human exposure to MPs through consumption of Bohai mollusks is estimated to be 3399 items·(capita·year)-1 (424-9349 items·(capita·year)-1). Overall, this study provides a basis for the ecological and health Risk assessment of MPs in mollusks collected from the coastline of China.


Asunto(s)
Gastrópodos , Contaminantes Químicos del Agua , Humanos , Animales , Microplásticos/análisis , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Moluscos , Medición de Riesgo
20.
Sci Data ; 11(1): 133, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272948

RESUMEN

The worm-shaped, shell-less Caudofoveata is one of the least known groups of molluscs. As early-branching molluscs, the lack of high-quality genomes hinders our understanding of their evolution and ecology. Here, we report a high-quality chromosome-scale genome of Chaetoderma sp. combining PacBio, Illumina, and high-resolution chromosome conformation capture sequencing. The final assembly has a size of 2.45 Gb, with a scaffold N50 length of 141.46 Mb, and is anchored to 17 chromosomes. Gene annotations showed a high level of accuracy and completeness, with 23,675 predicted protein-coding genes and 94.44% of the metazoan conserved genes by BUSCO assessment. We further present 16S rRNA gene amplicon sequencing of the gut microbiota in Chaetoderma sp., which was dominated by the chemoautotrophic bacteria (phylum Gammaproteobacteria). This chromosome-level genome assembly presents the first genome for the Caudofoveata, which constitutes an important resource for studies ranging from molluscan evolution, symposium, to deep-sea adaptation.


Asunto(s)
Cromosomas , Genoma , Moluscos , Animales , Cromosomas/genética , Anotación de Secuencia Molecular , Moluscos/genética , Filogenia , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...